KICP Research: Particle Astrophysics

One of the KICP’s primary missions is to explore the highest energy particles from space to study their origin, and their implications to fundamental particle interactions, quantum gravity and the structure of space-time itself. This research bridges the frontier between particle physics and astrophysics.

Researchers at the KICP are using a variety of facilities to study Ultra-high energy (UHE) cosmic rays and extremely energetic gamma-rays to gain insights into the highest energy processes at work in the universe and to indirectly study the nature of dark matter and its interactions. These very energetic photons and cosmic rays can probe particle physics phenomena that occur beyond the realm of the Standard Model of particle physics.

Cosmic rays are not "rays" but highly energetic particles - protons and atomic nuclei and neutrinos- that are accelerated to very high energies by various astrophysical phenomena in the universe. Cosmic rays could be accelerated in the jets produced when matter falls onto supermassive black holes at the centers of galaxies. They could be produced in the supernova explosions that accompany the death of massive stars or in gamma-ray bursts, or by extremely magnetized neutron stars (magnetars).

These processes can accelerate particles to vastly higher energies (up to 30 million times higher) than those attainable by earthbound accelerators. The Big Bang generated particle relics that we have yet to detect as dark matter - in other words the Universe itself acts as a giant 'cosmic accelerator' of particles, which may have been created in the earliest epoch of the Universe. Studying high-energy particles from space and extremely energetic gamma-rays will help scientists discern underlying connections between physical laws that governed the long-sought unification of forces. KICP scientists are involved with a number of different experimental facilities to explore these connections.


Angela Olinto

Angela Olinto

Senior Member


Paolo Privitera

Paolo Privitera

Senior Member


Abigail Vieregg

Abigail Vieregg

Senior Member


Scott Wakely

Scott Wakely

Senior Member


LianTao Wang

LianTao Wang

Senior Member